GEOMETRY FINAL EXAM REVIEW 2017

\square

Translate the figure 4 units to the left and 2 units down.

Write this rule algebraically.

Find the coordinates of the vertices after the given transformation
translation: $(x, y) \rightarrow(x-4, y+2)$

Reflect over the x -axis

\square
Rotate 180° clockwise.

Rotate 90° clockwise.

\square

$\angle 1=130^{\circ}$
\qquad because it is \qquad with $\angle 1$
$\angle 3=$ \qquad because it is \qquad with $\angle 2$
$\angle 4=$ \qquad because it is \qquad with $\angle 3$
$\angle 5=$ \qquad because it is \qquad with $\angle 4$
$\angle 6=$ \qquad because it is \qquad with $\angle 5$
$\angle 7=$ \qquad because it is \qquad with $\angle 6$
$\angle 8=$ \qquad because it is \qquad with $\angle 7$
$\angle 9=$ \qquad because it is \qquad with $\angle 8$
$\angle 10=$ \qquad because it is \qquad with $\angle 9$
$\angle 11=$ \qquad because it is \qquad with $\angle 10$
$\angle 12=$ \qquad because it is \qquad with $\angle 11$
$\angle 13=$ \qquad because it is \qquad with $\angle 12$

State if the two triangles are congruent. If they are, state how you know.
\square
Find the missing length.

Which of the other triangles is similar to $\triangle A B C$ and why?

b)

c)

Are these triangles similar?

How do you know?

Find $\sin (X)$	Find $\tan (Z)$
Find $\cos (Z)$	Find $\sin (Z)$

Use the Pythagorean theorem to find the missing side.	Use the Pythagorean theorem to find the missing side.
Use the Pythagorean theorem to determine if the	
triangle is a right triangle.	Use the Pythagorean theorem to determine if the
triangle is a right triangle.	

